

Assessing quality and quantity of data to establish exposure-response similarity between adults and pediatric patients: PEACE Initiative

Angela Yuxin Men, M.D., Ph.D. Neurology Team Leader DCP1/OCP/OTS/CDER 1/22/2015

CERSI Workshop on the Use of Exposure Matching and Exposure Response for Extrapolation of Efficacy in Pediatric Drug Development Disclaimer:

The views presented here do not necessarily reflect those of the US FDA

Outline

Critical Path Project

➤Extrapolation of efficacy from adults to pediatrics (≥ 4yo)

Exposure-response similarity between adults and pediatric patients

Data Collection/Analysis/Preliminary resultsFuture Steps

Critical Path Funded Project

Extrapolating Efficacy of AEDs from Adults to Pediatrics

Collaboration among PEACE-UMD-FDA

PEACE (Pediatric Epilepsy Academic Consortium on Extrapolation)

Background

	ADULTS	PEDIATRICS
MONOTHERA PY	Approved based on efficacy/safety trials	Pharmacometric based approval (<u>Trileptal & Topamax</u>)
ADJUNCTIVE THERAPY	Approved based on efficacy/safety trials	Can we extrapolate efficacy for adjunctive therapy in pediatrics based on adult trials?

Epilepsy in Pediatrics

- Epilepsy is a common neurological disorder in childhood.
- > Childhood is a peak age of onset for seizure onset.
- The majority of childhood onset seizures including those in younger children are of <u>partial onset</u>.

As the majority of studies of new AEDs are conducted in adults with partial onset seizures (POS), is it appropriate to extrapolate the efficacy from adults to pediatrics?

U.S. Pediatric Study Planning & Extrapolation Algorithm

Is it reasonable to assume that children, when compared to adults, have a similar; (1) disease progression and (2) response to intervention? Yes to both No to either Is it reasonable to assume similar exposure-response in pediatrics and adults? No Yes] Is the drug (or active metabolite) concentration measurable^{c,d} and predictive of clinical response? Is there a PD measurement that can be used to predict efficacy in children? L No. LYes] "Full L No] [Yes] extrapolation" Conduct: (1) Adequate PK study to select dose(s) to achieve similar exposure as adults. (2) Safety trials^a at the identified dose(s). "Partial extrapolation"[†] "No extrapolation"^f Conduct: "Partial extrapolation" Adequate dose-ranging studies in children to establish dosing. Conduct: (2) Safety^a and efficacy^b trials at the identified dose(s) (1) Adequate dose-ranging study in children to select in children. dose(s) that achieve the target PD effect.^e (2) Safety trials^a at the identified dose(s).

Footnotes:

- a. For locally active drugs, includes plasma PK at the identified dose(s) as part of safety assessment.
- b. For partial extrapolation, one efficacy trial may be sufficient.
- c. For drugs that are systemically active, the relevant measure is systemic concentration.
- d. For drugs that are locally active (e.g., intra-luminal or mucosal site of action), the relevant measure is systemic concentration only if it can be reasonably assumed that systemic concentrations are a reflection of the concentrations at the relevant biospace (e.g., skin, intestinal mucosa, nasal passages, lung).
- e. When appropriate, use of modeling and simulation for dose selection (supplemented by pediatric clinical data when necessary) and/or trial simulation is recommended.
- f. For a discussion of no, partial and full extrapolation, see Dunne J, Rodriguez WJ, Murphy MD, et al. "Extrapolation of adult data and other data in pediatric drugdevelopment programs." Pediatrics. 2011 Nov;128(5):e1242-9.

Two Key Questions

• Disease similarity?

 Exposure-response similarity between adults and pediatric patients?

Disease Similarity

- PEACE/DNP provides the clinical expertise to describe disease and intervention similarities between adults and pediatrics.
- Biological basis concludes that seizures in children four years of age and older are similar to seizures in adolescents and adults.
- Therefore, AEDs that are shown to be effective in adults with partial seizures, also can be expected to be effective in children ≥ 4 years of age.

Exposure-response similarity between adults & pediatric patients

Data Collection

- Essential Information Requested Study reports of conducted clinical trials for POS
 - Standardized seizure frequency data (i.e., seizure frequency per 28 days)
 - Individual level pharmacokinetic concentration data and any pharmacokinetic model used to derive the pharmacokinetic parameters
 - Information on demographics and concomitant medications.

Data Collection

- Additional Information
 - Individual level seizure frequency data from diaries
 - Statistical analysis code used to evaluate treatment effects
 - Analysis datasets containing concentration and seizure frequency information in adults and pediatrics.

U.S. Food and Drug Administration Protecting and Porpting Public Health IST OT Approved Drugs To Be

Investigated

Drug	Adult	Pediatrics	Indication	Adjunctive
Gabapentin (Neurontin)	> 12y	3y to 12y	Partial Seizures	3y to 12y
	> 16y	1m to 16y	Partial Onset Seizures	
Levetiracetam (Keppra)	> 12y		Myoclonic Seizure in Patients with Juvenile Myoclonic Epilepsy	/ Y
	> 16y	6y to 16y	Primary Generalized Tonic- clonic Seizures	
Clonazepam (Klonopin)	Y	> 10y or 30kg	Seizure Disorders Partial Seizures	
Lamotrigine (Lamictal)	Y	>=2y	Primary Generalized Tonic- clonic Seizures Generalized Seizures of Lennox- Gastaut Syndrome Primary Generalized Tonic-	Y -
Topiramate (Topamax)	Y	2-16y	Clonic Seizures Seizures of Lennox-Gastaut Syndrome Partial Onset Seizures	Y
Oxcarbazepine (Trileptal)	Y	Y	Partial Seizures	Y
Perampanel (Fycompa)	Y	>12y	Partial-onset seizures with or without secondarily generalized seizures	Y
Tiagabine (Gabitril)	Y	>12y	Partial seizures	Y

Exposure Response Analysis

- Graphical display of observed concentration response data
- Findings from model based analysis
- Compare adults and pediatrics exposure response relationship using equivalence approach

Exposure Response Analysis

- Graphical display of observed concentration response data
 - Similar E/R between adults and pediatrics for a given drug
- Findings from model based analysis
 Slopes are compared between adults and pediatrics
- Compare adults and pediatrics exposure response relationship using equivalence approach

 Approach used during regulatory approval for Trileptal

U.S. Food and Drug Administration Protecting and Promoting Public Health

Observed Exposure Response Relationship

Concentrations (Caverage or Cmin)

ADULT • PEDS

- Metrics evaluated:
 - Conc. comparison
 - N
 - Variability
 - Difference

17

Exposure Response Analysis

- Graphical display of observed concentration response data
 - Same metric between adults and pediatrics for a given drug
- Findings from model based analysis
 Slopes are compared between adults and pediatrics
- Compare adults and pediatrics exposure response relationship using equivalence approach

 Approach used during regulatory approval for Trileptal

U.S. Food and Drug Administration Protecting and Promoting Public Health

Placebo Response

E-R Relationship

P value > 0.05 indicates that the difference between slope of exposure-response between adults and pediatrics is not statistically significant 19

Analysis conducted by Shailly&Tao

Exposure Response Analysis

- Graphical display of observed concentration response data
 - Same metric between adults and pediatrics for a given drug
- Findings from model based analysis
 Slopes are compared between adults and pediatrics
- Compare adults and pediatrics exposure response relationship using equivalence approach
 - Approach used during regulatory approval for Trileptal

Trileptal Equivalence Analysis

Comparison of the model-predicted percent change from baseline in seizure frequency between adult and pediatric patients.

Cmin	Percent change		Difference: Pediatric patients-Adults	
(umol/L)	from baseline			
	Pediatric	Adults	Estimated difference	95% Confidence interval for
	patients		(% relative to adults)	difference
0.0	-16.7	-14.1	-2.5 (-17.9%)	(-15.0, 9.9)
17.0 -	-27.2	-29.5	2.3 (7.8%)	(-6.5, 11.1)
40.8	-40.0	-47.0	7.0 (14.8%)	(-2.5, 16.4)
68.0	-52.2	-62.3	10.1 (16.2%)	(-1.9, 22.1)
73.8	-54.5	-65.1	10.6 (16.2%)	(-1.5, 22.6)

Similar Shape predicts the similar responses to a given concentration achieved over the range of concentrations likely to be experienced.

- Pooling trials across different periods of time and geographic areas
- Six drugs across five different mechanism of actions
- The clinical trials were conducted in different countries at different sites
- How to interpret if the E/R relationship is not similar

Preliminary Results

- Concentration at approved dose are similar
- Exposure response relationship are similar for several drugs evaluated

Future Steps

- Continuously conduct E-R analysis for AEDs in adults and pediatrics
- Discuss with PEACE in early March
- Set criteria for extrapolating efficacy from adults to pediatrics in the adjunct therapy setting for POS

U.S. Food and Drug Administration Protecting A Control Of Wiedgement

• FDA:

- OCP:
 - Atul Bhattaram (CI)
 - Mehul Mehta
 - Ramana Uppoor
 - Michael Bewernitz
 - Vikram Sinha
 - Kevin Krudys
 - Joo Yeon Lee
- DNP:
 - Billy Dunn
 - Eric Bastings
 - Norman Hershkowitz
 - Phlip Sheridan
 - Cathleen Michaloski
- PMHS:
 - Donna Snyder
 - Hari Sachs

• <u>UMD:</u>

- Shailly Mehrotra (ORISE Fellow)
- Tao Liu (ORISE Fellow)
- Joga Gobburu

• <u>PEACE:</u>

- Jack Pellock
- Neil D'Cruz
- Jackie French

• Epilepsy Foundation:

Angela Ostrom

